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Direct simulations of a rough-wall channel flow
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In this study, we performed simulations of turbulent flow over rectangular ribs
transversely mounted on one side of a plane in a channel, with the other side
being smooth. The separation between ribs is large enough to avoid forming stable
vortices in the spacing, which exhibits k-type, or sand-grain roughness. The Reynolds
number Reτ of our representative direct numerical simulation case is 460 based on
the smooth-wall friction velocity and the channel half-width. The roughness height h

is estimated as 110 wall units based on the rough-wall friction velocity. The velocity
profile and kinetic energy budget verify the presence of an equilibrium, logarithmic
layer at y � 2h. In the roughness sublayer, however, a significant turbulent energy
flux was observed. A high-energy region is formed by the irregular motions just above
the roughness. Visualizations of vortical streaks, disrupted in all three directions in
the roughness sublayer, indicate that the three-dimensional flow structure of sand-
grain roughness is replicated by the two-dimensional roughness, and that this vortical
structure is responsible for the high energy production. The difference in turbulence
structure between smooth- and rough-wall layers can also be seen in other flow
properties, such as anisotropy and turbulence length scales.

1. Introduction
Rough-wall turbulence arises in many applications, such as turbo-machinery,

electronics cooling, and vegetation canopies. Most walls are effectively rough in the
high-Reynolds-number limit. In a smooth-wall boundary layer, the viscous sublayer
exhibits a high impedance for momentum and heat transfer between flow and a
surface, which characterizes the near-wall behaviour of smooth-wall turbulence. In
this near-wall region, the Kolmogoroff length scale becomes the same order as,
or larger than, the distance from the wall, so that viscous diffusion, rather than
eddy diffusion, is dominant. Surface roughness disturbs this viscous layer structure,
producing irregular turbulent motions and affecting the transfer rates.

For random roughness, the origin may be defined as the mean height of the
roughness elements. Then, the turbulent kinetic energy (TKE) at y = 0 is not zero,
unlike at a non-slip smooth surface. In a macroscopic sense, this implies a need to
consider kinetic energy transfer to and from the rough surface, which would contradict
the equilibrium boundary condition commonly adopted in roughness modifications
of turbulence models (for example, see Arora, Kuo & Razdan 1982; Lee 1996).
The role of a rough surface should be identified as either sink or source for TKE,
depending on the sign of an energy flux in the wall-normal direction at the surface.
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Our objective has been to understand turbulence modifications for their relevance
to statistical closure models on the rough-wall boundary layer via direct numerical
simulations (DNS), especially in terms of the TKE flux in a near-wall region.

Since the roughness height h is a parameter in determining the effective roughness
state when normalized in wall units by friction velocity uτ and molecular viscosity ν,
h+ may become large enough at a high Reynolds number, even if h is infinitesimal
compared to a characteristic length of the field, L. This can be understood from the
following relation:

h+ =
huτ

ν
=

h

L
Reτ → ∞ as Reτ → ∞. (1.1)

As h+ increases, the flow state is altered. Based on sand-grain roughness experiments
for pipe flows by Nikuradse (1933), a rough-wall turbulent flow can be classified
as fully rough, for h+ > 70. In general, the critical roughness-height varies with
geometrical configurations; for instance, this critical height may decrease down to
h+ � 10 for two-dimensional rib-type roughness, as shown by Bandyopadhyay (1985).
The fully rough state means that the flow reaches a certain limit at the critical
Reynolds number, if the roughness geometry is fixed; beyond that, the flow becomes
independent of molecular viscosity, which is indicated by the modified logarithmic
law (Tennekes & Lumley 1972; Perry & Joubert 1963; Perry, Schofield & Joubert
1969; Schlichting 1979):

U

uτ

=
1

κ
log

(y

h

)
+ B, (1.2)

where κ is the von Kármán constant, y is the distance from the wall, and B is
a reformed additive constant. Since historically the sand-grain roughness had been
extensively studied, the equivalent sand-grain height is defined through (1.2). For sand-
grain roughness, B = 8.5 has been obtained for the fully rough state. In general, once
B is determined for given h and Reynolds number, the equivalent sand-grain height
hsand for the rough surface is obtained via:

B = 8.5 +
1

κ
log

(
h

hsand

)
. (1.3)

In addition to the modification of an additive constant, we could shift the origin
of the logarithmic function for a better fit of velocity distributions above rough
walls to a log-profile. This has been done along with atmospheric studies as well as
laboratory measurements (Hanjalić & Launder 1972; Jackson 1981; Bandyopadhyay
1985; Raupach, Antonia & Rajagopalan 1991).

Two types of roughness

In an engineering context, two types of roughness have been recognized, depending
on the surface configuration. One is called ‘k’ type roughness, which is represented
by sand-grain roughness. This is characterized by unstable eddies that have a length
scale proportional to k, or roughness height, formed behind a roughness element.
The eddies shed into the flow produce three-dimensional turbulent motions, and form
the roughness sublayer structure. Three-dimensional irregular protrusions are also
supposed to be included in this type. In laboratory work, Ligrani & Moffat (1986),
Perry, Henbest & Chong (1986), Krogstad, Antonia & Browne (1992), Krogstad &
Antonia (1994), Shafi & Antonia (1997) investigated rough-wall boundary layers of
regularly configured k-type surfaces. The other type of roughness is referred to as
‘d ’ type, characterized by the two-dimensional geometry of rectangular elements; the



Direct simulations of a rough-wall channel flow 237

spacing between them is about the same order as the element height. Its flow pattern
is represented by stable vortices confined in narrow cavities. Therefore, the interaction
between roughness and the outer flow region is relatively restricted (Perry et al. 1969;
Bandyopadhyay 1985).

For the roughness comprising cylindrical rectangular ribs, the spacing between
them, w, is a determinative parameter, indicating whether it is k-type or d-type. For
narrow cavity spacing, d-type roughness is achieved as has been explained, whereas
k-type behaviour is observed for wider rib separation. In the experimental study
by Bandyopadhyay (1985), it is reported that w � 3h is large enough to lead to k-
type roughness, whereas w � h shows d-type roughness. Leonardi et al. (2003b) and
Nagano, Hattori & Houra (2004) also numerically investigated the effect of this cavity
spacing for rectangular rib roughness. The experiment conducted by Raupach (1981)
is the example of various two-dimensional cylindrical geometries of k-type roughness.

Efforts to resolve the roughness sublayer

In experimental studies, the major problem in obtaining turbulence statistics within
a roughness sublayer is measurement error due to the high turbulence intensities near
roughness elements; this measurement difficulty is inherent in rough-wall turbulence.
Hence, the roughness sublayer has been studied in only a few cases of engineering
laboratory work, excepting cavity flows of d-type roughness (Perry, Schofield &
Joubert 1969; Djenidi, Elavarasan & Antonnia 1999). In meteorological work, on the
other hand, turbulence structure within a canopy has been resolved to some degree.
When statistical quantities within roughness are expressed, horizontal averaging is
often used to remove the fluctuations in a vegetation wake. One-dimensional functions
on height are derived in those cases (Wilson & Shaw 1977; Raupach & Shaw 1982).

Since rough-wall turbulence is complex in terms of its geometrical configuration
and flow structure, a numerical simulation to resolve the flow down to the roughness
sublayer may have been expensive even for simplified roughness geometries. Several
DNS cases have been reported for wall roughness. De Angelis, Lombardi & Banerjee
(1997) and Cherukat et al. (1998) studied two-dimensional wavy walls at relatively
low Reynolds numbers. Rectangular rib-roughness has also been investigated in DNS
studies (Miyake, Tsujimoto & Nakaji 2001; Ashrafian & Andersson 2003; Leonardi
et al. 2003b; Nagano et al. 2004). In their work, the rib spacing was held large enough
to attain k-type roughness at various roughness heights, ranging from h+ = 13.6
(Ashrafian & Andersson 2003) to h+ = 90 (Leonardi et al. 2003b). As shown by
Bandyopadhyay (1985), h+ � 10 is a critical value for a fully rough state; hence, all
these calculations may be assumed to be fully developed rough-wall simulations. In
addition, Leonardi et al. (2003b) examined the wide variety of w/h to investigate the
rib spacing effect parametrically.

There are several LES studies for flow over bluff-body obstacles using a finite-
difference approach (e.g. Yang & Ferziger 1993; Shah & Ferziger 1998; Cui, Patel
& Lin 2003), although not all of them were conducted primarily for wall roughness.
Shah & Ferziger (1998) simulated flow over a cube mounted on a wall. Their study
shows coherent vortical structures, which include periodic horseshoe-vortex shedding
around a cube in the time-dependent field. In our study, however, the features seen
in § 5 are different from their three-dimensional obstacle flow.

Research objectives

For a better understanding of rough-wall turbulence, detailed flow structures in
the vicinity of a roughened surface should be clarified, as well as those in the
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Figure 1. (a) Asymmetric channel geometry of the representative case. (b) Configuration of
rib roughness and a subset of the numerical grid.

outer region above the roughness sublayer. We perform direct numerical simulations
of a rough-wall turbulent flow for this purpose, since it is well suited in terms
of the resolution of data sampling and visualizations of both instantaneous and
averaged flow fields. The fully rough turbulent flow of k-type roughness is numerically
reproduced, which is distinguished by irregular unsteady flow motions. The Reynolds
number we select here should be high enough to reach a fully rough state, by carefully
examining the numerical resolution in the roughness sublayer. In the simulation, the
fundamental mechanism of k-type roughness will be clarified. The three-dimensional
vortical structure near roughness elements will be captured through data analysis
and visualizations. It must be examined in conjunction with a TKE flux on a rough
surface, since the vortical motion is responsible for the major production of TKE.
Also, through the post processing of statistical data, the roughness effects on Reynolds
stress and TKE budget are estimated. The equilibrium assumption, which is common
in statistical models, is re-assessed. The energy balance on a rough surface is carefully
examined, to ascertain whether the wall roughness serves as an energy sink or source
for the outer layer.

2. Computational geometry and numerical method
For the simulation of a rough-wall turbulent flow, two-dimensional rib roughness

is employed. Cylindrical rectangular ribs are mounted on one side of a plane
channel to represent strip roughness, aligned in the spanwise direction, while the
other side is left smooth. As a representative case, a square cylinder is chosen
for rib roughness; the spacing between two ribs is 9h, where h is the square
rib height, which defines one wavelength of geometrically periodic roughness as
10h. The wavelength is large enough for the attached square ribs to reproduce k-
type roughness, since the reattachment of boundary-layer separation occurs within
the spacing (Bandyopadhyay 1985). A complete view of the representative channel
geometry and a subset of the numerical grid is shown in figure 1. The asymmetric
channel chosen here was experimentally investigated by Hanjalić & Launder (1972). In
our DNS study, periodic boundary conditions are applied in the streamwise direction
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as well as in the spanwise direction. The flow is driven by a prescribed mean pressure
gradient. In the representative configuration, four ribs are mounted to form a rough
wall. The domain size is given as (Lx, Ly, Lz) = (40h, 17h, 20h) in the streamwise,
wall-normal, and spanwise directions, respectively.

The way in which the randomness of roughness geometry affects turbulence
quantities is also of interest. To imitate random roughness, we conducted another
case of rectangular rib roughness with two rib-heights. Unevenness of rib height is
imposed by alternatively increasing and decreasing the original square rib height h by
15 % to 0.85h and 1.15h, so that the average of roughness heights remains equal to h.
The other geometrical parameters, such as the rectangular-rib width, rib-spacing, and
channel width, remain the same, h, 9h and 17h, respectively. The same mean pressure
gradient as in the cases with the square rib roughness is applied.

The governing equations are the incompressible Navier–Stokes equations,

∂Ui

∂t
+

∂(UiUj )

∂xj

= −∂P

∂xi

+ ν
∂2Ui

∂xj∂xj

, (2.1)

∂Uj

∂xj

= 0, (2.2)

where U1, U2 and U3 (or U , V and W ) are velocities in the x1 (streamwise), x2

(normal) and x3 (spanwise) directions (or x, y and z), respectively, P is pressure,
and ν is molecular viscosity. To advance the solution in time, a fractional step
method (Kim & Moin 1985) is employed with a semi-implicit approach; the time
advancement of the momentum equations is the hybrid of an explicit third-order
Runge–Kutta scheme and an implicit second-order Crank–Nicolson scheme (Spalart
1987). At each substep of the semi-implicit scheme, the momentum equations are
advanced with pressure terms left unchanged. Then, the intermediate velocity is
projected onto a divergence-free field to satisfy the continuity equation (2.2) through
the pressure correction function, which obeys a Poisson equation. The governing
equations are spatially discretized with a second-order centred difference scheme on
a rectangular grid, where a three-dimensional staggered mesh is employed with a
finite-difference formulation, unequally spaced in the x- and y-directions. Still the
numerical scheme can use the homogeneity of the grid spacing in the z-direction to
reduce the three-dimensional Poisson equation to a set of decoupled two-dimensional
Helmholtz equations through a Fourier decomposition (Akselvoll & Moin 1995).
Each Fourier mode is solved with a multigrid method to accelerate the convergence
of the iterative procedure.

As seen in figure 1(b), the numerical grid is densely allocated near walls, in both the
streamwise and wall-normal directions, to sufficiently resolve a rough-wall boundary
structure of turbulence motions. Since the grid is fitted to the rib surface, we do not
require a forcing-function technique that was employed in several other studies to
represent a roughness element (e.g. Miyake et al. 2001; Leonardi et al. 2003b). Rather,
non-slip boundary conditions are applied directly to momentum equations on the rib
surface, as well as on the upper and lower channel walls. To avoid the restriction
of the Courant–Friedrichs–Lewy condition due to the grid being finely placed in the
streamwise and wall-normal directions near a square rib, both the convective and
viscous terms in these directions are implicitly treated; the spatial differences in the
spanwise direction are explicitly solved. As for the discretization of convective terms,
it turns out that the mesh stretching in the streamwise direction may severely disturb
turbulent eddies, and therefore, adversely affect resultant statistical quantities. In our
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Figure 2. Instantaneous velocity fluctuation, (u2 + v2 + w2)1/2, in the (x, y)-plane of the entire
domain. Grey scales range from 0.0 (black) to 4.0 (white) in wall units, normalized by the
friction velocity at the rough-wall side, uτR

.

ribbed-wall DNS study, the convective scheme was carefully examined and tested to
minimize this mesh stretch error. The formula employed is written in the conservative
form for momentum, and reduces to the kinetic-energy conserving form in the inviscid
limit if the numerical mesh is equally spaced. The details of the spatial discretization
are presented in Ikeda & Durbin (2004).

3. Summary of numerical results
We carried out a full turbulent simulation on square rib roughness, referred to

as Case F–1. The adequacy of grid resolution for this simulation is examined and
confirmed through an extensive grid-independence study; the details and additional
sampled-data sets can be found in Ikeda & Durbin (2002). An instantaneous view of
velocity fluctuation in an (x, y)-plane is shown in figure 2. Near the rough-wall surface,
eddies with length scales comparable to the roughness height can be recognized. In
the middle of the channel, a large volume of high-velocity fluctuation is formed away
from the wall, and convected downstream with the mean flow. The smooth-wall side
is relatively inactive except for the streaks near the upper surface.

As a reference case, we name the experimental study by Hanjalić & Launder (1972)
Case H–L. The experiment was conducted at various Reynolds numbers ranging
from 18 500 to nearly 80 000 based on the maximum velocity and half the distance
between the planes, while the corresponding Reynolds number of our fully resolved
DNS case is about 8200. Although the Reynolds numbers of their study are more
than twice, up to several times, as high as those of our numerical simulations, their
data serve to validate the numerical results; some statistical results do not exhibit
obvious Reynolds-number dependence. When compared to our DNS case, however,
the results at the lower Reynolds numbers are used.

The ratio of shear forces acting on the rough and smooth walls is about 4:1, which
agrees with that reported in Case H–L. On the rough-wall side, the dominant drag is
the pressure force on the side faces of the ribs; in fact, the mean viscous stress on the
surface provides a negative contribution owing to recirculation around the rib, while
the pressure drag is nearly 105 % of the total force. Therefore, τR denotes the mean
drag force per unit area on the rough wall, while τS is solely the mean viscous force
per unit area on the smooth wall.

On the same geometry, we performed two-dimensional steady-state RANS
calculations with an eddy-viscosity model, not only to validate our DNS results, but
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Case Lx/h Grid size τR : τS Reb ReτS
h+

R

F–1 40 1024 × 352 × 192 4.05 6520 460 109
M–2 60 864 × 288 × 128 3.71 6730 478 108 ∗

RANS 10 112 × 161 × 1 2.70 8110 539 104

∗ The average of two roughness heights; each height is 92 and 125 wall units, respectively.

Table 1. Summary of numerical simulation for rib roughness. Reb is the Reynolds number
based on the bulk velocity and half the channel width, Reb = UbulkLy/2ν.

�x+
S min �x+

S max �y+
S min �y+

S max �z+
S

0.20 6.2 0.20 7.6 5.6

Table 2. Grid spacings for the fully resolved Case F–1. Wall units are based on the friction
velocity of the smooth-wall side, uτS

.

also to examine the performance of turbulence models. The RANS solver employed
here uses the artificial compressibility scheme (Rogers & Kwak 1990); the v2–f model
(Durbin 1991) is implemented for eddy viscosity in the solver. The employed model
constants and treatment of no-slip boundaries are summarized in Durbin (1995). Since
h+

R = h/τR > 100 has been achieved in each case, the roughness height is supposed to
be large enough to produce the fully rough state.

In addition, a turbulent simulation on rectangular rib roughness with non-uniform
height, Case M–2, is considered in order to examine an uneven-roughness effect as
described in § 2. The streamwise domain length Lx , grid size and other flow properties
are summarized in table 1. In all the DNS cases, the spanwise length is 20h. Although
the grid resolutions in the above two cases are different, we confirmed through a grid-
independence study that the grid size used in Case M–2 did not exhibit significant
effects on obtained statistical data, when the same level of coarser grid resolution was
applied to the square rib roughness compared with the fully resolved result, Case F–1.

The numerical mesh used in the simulations is unequally spaced in the streamwise
and wall-normal directions, and homogeneous in the spanwise direction. For
Case F–1, table 2 summarizes the mesh spacings in each direction, normalized in
wall units using the friction velocity on the smooth-wall side. If the rough-wall
friction velocity is used for normalization, the values become about twice as large as
those shown in table 2. In the wall-normal direction, the minimum spacing comes to
both sides of the channel, and also on the top of the square rib. In the streamwise
direction, the spacing is minimized on the front and back sides of the rib, and reaches
a maximum at the middle between the ribs. The maximum grid stretching ratio is 1.1
in both inhomogeneous directions, just above the rib and near the smooth wall, and
also near the upstream and downstream sides of the rib. The region within the rib
roughness is finely resolved with a low grid stretching ratio.

4. Averaged results
4.1. Mean velocity field

Figure 3 shows the distribution of the mean streamwise velocity, averaged in the
streamwise direction and normalized by Umax = 〈U〉|max of the DNS case, where
the overbar and the angle brackets denote ensemble average and streamwise average,
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Figure 3. Mean velocity profiles normalized by Umax for Case F–1 and H–L. The dotted line
indicates the square roughness height, y = h.
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Figure 4. Smooth-wall mean velocity profiles on a logarithmic scale. U+
S = 〈U〉/uτS
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dotted line is a smooth-wall log-law, U+
S = (1/κ) ln ỹ+

S + A, where κ = 0.42; the additive
constant A = 5.5.

respectively. The Case H–L result at Re = 18 500 is also shown. Although the Reynolds
number of the DNS case is lower than for H–L, the mean velocity profiles agree well,
after the normalization by Umax.

The zero-turbulent shear location does not coincide with the zero-mean velocity
shear location, at which 〈U〉 takes its maximum in the asymmetric channel, as pointed
out by Hanjalić & Launder. Umax is given at y/Ly = 0.76, whereas 〈uv〉 reaches zero
at y/Ly = 0.81 in our DNS case; both the positions are closer to the smooth-wall
side than the experimental data, about 0.70 and 0.79, respectively.

Since the zero-turbulent shear location is close to the smooth-wall side, the
interaction of turbulent motions from both sides of the channel occurs near that
wall. Because of this, the smooth-wall side does not reach the asymptote of channel
flow turbulence at a high Reynolds number, although the Reynolds number of our
DNS case is sufficiently high. The maximum of TKE production is about 0.22 in wall
units normalized by u4

τS
/ν, instead of 0.25. The distance between the smooth wall and

the zero-shear location is about 180 in wall units normalized by ν/uτS
.

Velocity profiles on a logarithmic scale, whose origin is taken on the smooth wall,
are shown in figure 4. Since Case H–L is at a higher Reynolds number than the
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Figure 5. Rough-wall mean velocity profiles on a logarithmic scale. U+
R = 〈U〉/uτR

. The
dotted line is an empirical equation proposed by Hanjalić & Launder (1972).

numerical simulations, the maximum velocity of H–L in wall units is larger than the
DNS cases. Nevertheless, each case replicates the logarithmic law on a smooth wall.

Rough-wall velocity profiles on a logarithmic scale are shown in figure 5. The DNS
results are compared to the H–L experimental data and the RANS solution with the
v2–f model. The velocity is normalized by uτR

. Both the even and uneven DNS cases
show a log-dependence with the slope of 1/κ above y ≈ 2h. A modified logarithmic
function, proposed by Hanjalić & Launder,

U+
R =

1

κ
log

(
y

h

)
+ 3.2, (4.1)

agrees well with our DNS profile. This is the case where B = 3.2 in (1.2). In figure 5,
we needed no origin shifting for a better log-law velocity profile fit. By applying
least-squares fitting, we found the optimum displacement height of the origin greatly
depends on the integration range. Although Hanjalić & Launder suggested −0.4h

for the displacement height, our data indicate that the additive constant, B = 3.2,
employed in (4.1), is achieved without any displacement by the fitting. Also, compared
to the roughness function obtained in the DNS study of a rib-roughened channel by
Leonardi et al. (2003b), their velocity-profile fitting corresponds to B � 3.2 for the
case w/h= 7, where w is the spacing between ribs, if their roughness height h+ is
estimated to be 90 wall units as they provided.

If we apply (1.3) to obtain the equivalent sand-grain height, hsand , for this rib
roughness, it would reach nearly 1000 wall units, owing to a relatively low additive
constant, B = 3.2. However, this is only a consequence from logarithmic velocity
profile fitting way above the roughness sublayer. Equivalent sand-grain roughness is
an estimate that correlates a given geometrical configuration and an obtained velocity
profile, based on the experiments of sand-roughened pipe flow. Although it is widely
used as a measure for wall roughness, it should be noted that hsand does not directly
indicate a physically significant level of rough-wall flow structure.

A RANS solution is included in figure 5. It is the streamwise average of a solution
for flow over the detailed rib geometry. This should not be confused with RANS
models that are modified for unresolved roughness. The RANS does show a log-
dependence, but the slope does not match the reciprocal of the Kármán constant. In
addition to the v2–f model, the Spalart–Almaras model (Spalart & Allmaras 1994)
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Figure 6. Rough-wall velocity profiles on a logarithmic scale at various x locations for the
DNS case. The log function of (4.1) is also shown with dotted lines. Rib roughness exists in
4.5 � x/h � 5.5, 0 � y/h � 1.

was also solved, with an essentially identical result: the streamwise-averaged flow
had a log-layer velocity profile that went above the data, with the wrong slope. In
addition to these eddy viscosity models, Seo (2004) applied Reynolds-stress models
to the same flow configuration, with almost the same result. Note that, in part, the
discrepancy reflects an error in the pressure drag on the rough-wall side, since that
enters the normalization.

The reason for the inaccurate RANS prediction could be that the eddies seen near
the surface, as will be shown in figures 13 and 14, are rather different. Next to a
smooth wall, they are elongated parallel to the surface; above the rib roughness,
they are choppier and lift away from the wall. Models calibrated with smooth-wall
data may not have the correct empiricism to capture the averaged flow over rib
roughness when the geometry is fully resolved. Models that are modified for random
roughness do not attempt to capture the flow in between roughness elements. They
are applicable above the roughness and often have the correct log-layer displacement
built into them (e.g. Durbin et al. 2001).

Figure 6 shows the distribution of U profiles on a logarithmic scale, for various x

locations over one period of roughness geometry. Deviations from the mean profile
can be recognized near the surface, below y � 2h to 4h; however, even near the
rib roughness, departure from the log-function is trivial at y > 2h. Above the region
directly influenced by the roughness, the log-dependence of velocity profiles is observed
at all locations in the channel.

4.2. Streamlines and reattachment lengths

The streamlines of the averaged two-dimensional velocity field of the DNS result,
Case F–1, are shown in figure 7, as well as the steady state RANS result. In the DNS
case of figure 7(a), several separation–reattachment (SR) regions are developed. Each
zone is bounded by the non-slip walls and the zero-velocity lines that are denoted
by a dashed line. The primary downstream SR region, whose separation occurs
downstream of the rib top, has its reattachment at about the middle of rib spacing, or
4.5h behind the back face of a square rib. In the upstream region of the rib roughness,
a smaller SR zone is formed, as well as a secondary SR region in the downstream. In
addition to these, a thin SR region on the rib-top can be recognized in the figure. In
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Figure 7. Streamlines of an averaged field around a square rib for: (a) DNS (F–1); (b)
steady-state RANS (v2–f ). Dashed lines denote zero-velocity. One contour level indicates
3.33 × 10−1% of the total mass flux in the positive flux region, and 4.50 × 10−2% in the
positive.

other DNS studies for similar flow geometries, Leonardi et al. (2003b) reported 4.8h

for the reattachment length in their w/h � 7 cases, while the result by Ashrafian &
Andersson (2003) did not show apparent reattachment for the primary recirculation
bubble at w/h = 7. On the other hand, the streamlines obtained by Miyake et al.
(2001) show that the reattachment of the primary SR region occurs directly on the
upstream side of a rib, not on the bottom of the rib spacing, which is quite different
from the above cases including our result, while w/h � 6. This difference can be
attributed to the Reynolds-number dependence of flow structure within roughness.
Although the study by Bandyopadhyay (1985) indicates that h+ � 10 may be large
enough to reach the fully rough state for this typical roughness configuration, still a
difference of mean velocity profiles is observed in the numerical studies performed at
different Reynolds numbers and roughness heights, on a similar geometry.

Compared to our DNS solution, the steady-state RANS shows a different result: the
primary downstream SR region is elongated along the bottom wall, and combined into
the upstream region. Whereas the DNS solution is the average of an unsteady flow
field, only a steady-state solution can be obtained through the RANS simulation. Even
if a second-order temporal accuracy is retained with a sufficiently small time-step size,
no unsteady motion is observed. However, if RANS is used for flow past an obstacle,
not attached to a plane, a periodic vortex shedding may be reproduced (e.g. Durbin
1995). If unsteady motions are reproduced in RANS, it can represent additional
Reynolds stress, and the downstream SR length would be shortened. Nevertheless,
unsteady solutions cannot be obtained in two-dimensional RANS simulation when
an obstacle is mounted on a surface.
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Figure 8. Rough-wall velocity profiles at various x locations, x = 0 to 19h, for the uneven
roughness case. Dashed lines denote the square rib case, F–1. Separation–reattachment regions
are shown by light grey.

The uneven roughness case

Figure 8 shows U profiles in the roughness sublayer, y < 2h, for various x locations
with zero-velocity contours, over one period of roughness geometry of the uneven
roughness case. U is normalized by U0, the maximum value for y < 2h. The velocity
distribution of the even roughness case is also shown as a reference.

The primary reattachment length of the shorter rib is about 3.5h, while that of the
taller rib is about 5.5h. Since the same rib separation is specified between each pair
of ribs, the smaller recirculation bubble for the shorter rib provides a longer distance
to form a fuller velocity profile. This increases the mass flux upstream of the taller rib
within the roughness sublayer, and, therefore, explains why the pressure drag acting
on a taller rib is about 42% larger than that on a square rib in Case F–1, with only a
15 % increase in rib height. For instance, the mass flux for y � 2h at the middle of the
upstream region for the taller rib, x = 10h in figure 8, is about 1.5 times as large as that
for the shorter rib at x = 0. If we assume that the same drag coefficient can be applied
to both the ribs using these mass fluxes, or U velocity averages, we can estimate that
the form drag acting on the taller rib would be about 2.8 times as large as that on
the shorter. This is close to the factor 2.6 computed from the pressure distribution.

4.3. Momentum budget

The streamwise-averaged U equation for a rib-roughened channel can be written as

0 = −
〈

∂P

∂x

〉
− ∂

∂y

(
〈U ′

V
′〉 + 〈uv〉 − ν

∂〈U〉
∂y

)
. (4.2)

Unlike a uniform smooth-wall channel or pipe flow, the pressure term in (4.2) is not
independent of y within roughness, since 〈∂xP 〉 = ∂x〈P 〉 − δP /L̃x , where ∂x〈P 〉 is the
prescribed constant gradient, δP is the discontinuous change of pressure across rib
roughness, and L̃x is the total field length of the fluid, the residue of Lx from which
the total width of roughness elements is subtracted. This is recognized commonly
along with the space-averaging procedure in a meteorological framework (Wilson &
Shaw 1977; Raupach & Shaw 1982; Finnigan 2000). Although δP vanishes above
roughness, it becomes a dominant term within wall roughness. This pressure effect is
a notable property in the momentum balance for rough-wall turbulence.

Figure 9 shows the momentum budget of (4.2), normalized by the rough-wall friction
velocity, for the rib-roughened channel. Within the roughness, Reynolds stress is the
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Figure 10. Streamwise-averaged Reynolds-stress distributions for the DNS cases and H–L.

other dominant term to balance the pressure term, except for the near-wall regions at
the bottom and top of the roughness elements. Close to the bottom surface, the viscous
term rises and balances pressure drag, because Reynolds stress vanishes on the wall.
Since the pressure drag contributes adversely in the momentum budget, the viscous
diffusion becomes positive at the surface, which makes the mean velocity gradient
negative on the surface; it expresses the recirculation of mean flow. Near the top of
roughness, dispersive momentum flux becomes significant as well, since the mean flow
field provides large fluctuation from the streamwise average because of separation and
recirculation near the roughness element. The dispersive term vanishes above y � 2h,
where the velocity profile regains the log-law. On the other hand, the observation by
Ashrafian & Andersson (2003) on the momentum fluxes near a rib-roughened wall
shows that the dispersive term could be significant over several roughness heights,
while the roughness height in their simulation is relatively low, 13.6 wall units.

4.4. Reynolds stress distributions

Reynolds-stress distributions are shown for Cases F–1, M–2 and H–L in figure 10,
normalized by the rough-wall friction velocity of each case. Throughout the channel,
〈u2〉 > 〈w2〉 > 〈v2〉 except close to the bottom of the rib elements, where 〈u2〉 < 〈w2〉,
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Figure 11. The turbulent kinetic energy distributions near the square rib for: (a) DNS (F–1);

(b) RANS (v2–f ). One contour level denotes 0.2 and grey-scales range between 0.2 (black)
and 3.7 (white) wall units, normalized by u2
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, respectively.

because two-dimensional transverse roughness prevents the streamwise velocity
fluctuation, which intensifies the spanwise turbulent motions. The region near the
smooth wall exhibits more intensive anisotropy than the rough-wall region, as will
be discussed in § 6. A sharp peak of u2 at y+ � 15, which is effected by a smooth
wall that has high viscous impedance, is not seen on the rough-wall side. In the
middle of channel, 〈w2〉 � 〈v2〉. The maximum turbulent kinetic energy obtained from
these streamwise-averaged values, k+

R |max = 1
2
〈u2 + v2 + w2〉|max/u

2
τR

, is 3.4, while the
maximum on the smooth-wall side is 4.3 wall units, normalized using the smooth-wall
friction velocity uτS

.
Although the tendency of the three components of TKE in H–L are replicated well

in the numerical simulations, there is a certain amount of inconsistency, especially
in the 〈u2〉 profiles near the rough wall. The laboratory results of other Reynolds
numbers present no discernible variations, if normalized by the rough-wall friction
velocity, over the range from it Re =18 500 to 56 000, based on the maximum velocity
and channel half-width. A possible reason for this inconsistency between both the
studies is the low-Reynolds-number effect in our DNS case.

As can be seen from the streamwise-averaged Reynolds-stress distributions in
figure 10, TKE has its maximum just above the rib roughness, averaged in the
streamwise direction. Figure 11 compares the TKE distributions between DNS and
RANS around square-rib roughness. Maximum TKE regions are observed just above
the rib. Boundary-layer separation which occurs on the bluff body produces non-
periodic spanwise vortex shedding. It leads to a high turbulent energy area, especially
for u2, in the downstream region. Comparing the DNS and RANS cases, the two-
dimensional distributions are rather different.

The DNS result shows that TKE has a peak over the rib top-face, and that the
high energy is convected downstream with the mean flow. In the RANS k solution,
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the peak comes close to the upstream face corner, at which the positive definite TKE
production term, computed using the eddy viscosity, reaches its maximum, since the
magnitude of the mean velocity strain increases at the corner. On the contrary, the
TKE production term of the DNS case includes a negative region near the corner.

In addition, a secondary high-energy region exists upstream of the rib in figure 11(a),
which is not replicated by RANS. Since the flow is blocked in the streamwise
direction by strip roughness, the spanwise velocity fluctuation is intensified, as seen in
the streamwise-averaged Reynolds-stress distributions (figure 10). If we examine the
vortices of the wall-normal direction, the unsteady motions of ωy vortical structure
are observed, generated near the upstream side of the rib (figure 15). This is another
notable aspect of the TKE generation for strip roughness, which cannot be reproduced
by steady-state two-dimensional RANS.

The difference in the high-kinetic-energy regions can be understood by inspecting
each component of Reynolds stress. Figure 12 shows the two-dimensional distributions
of u2 + v2 and w2. The u2 + v2 distribution indicates that the x–y unsteady motions
largely account for the high-energy region just above and downstream of the rib
roughness. On the other hand, w2 clearly shows its maximum on the upstream face of

the rib. Both the maximum values are almost of the same order: u2 + v2
+

R |max = 6.1,

w2
+

R |max = 5.6.

5. Vortical structure
5.1. Instantaneous view

The vortical structure is important in both production and dissipation of turbulent
kinetic energy. Whereas an energetic range of vorticity produces energy through



250 T. Ikeda and P. A. Durbin

Figure 13. Iso-surfaces of ωx near the smooth wall. Dark grey, +25.0%; light grey, −25.0%
of |ωx |Smax, respectively, or ±0.37 wall units, normalized by u2

τS
/ν.

Figure 14. Iso-surfaces of ωx near the rough wall. Dark grey, +5.0%; light grey, −5.0% of
|ωx |Rmax, respectively, or ±0.19 wall units, normalized by u2

τR
/ν.

vortex shedding and stretching, a dissipative range with the Kolmogoroff length scale
accounts for the energy dissipation. Here, the instantaneous three-dimensional vortical
structures are compared in the neighbourhood of the smooth- and rough-wall through
visualization. A notable dynamical change of turbulence structure can be seen in the
instantaneous near-wall vorticity field, as also seen in the averaged results that will be
shown in § 5.2. Figures 13 and 14 show the iso-surfaces of streamwise vorticity field
near the smooth and rough walls, for ωx = ± 0.25 |ωx |Smax and ωx = ± 0.05 |ωx |Rmax,
respectively, where |ωx |Smax and |ωx |Rmax are the maximum values given in each field
shown.

On the smooth-wall side, the vortical streaks are clearly captured, elongated in
the streamwise direction. They serve as an energy source in the non-equilibrium
layer and account for the near-wall behaviour of TKE. The development of these
near-wall streaks in vorticity and velocity fluctuation was studied by Butler & Farrell
(1992) through the Orr–Sommerfeld eigenmode analysis. On the other side of the
channel (figure 14), the transversely mounted rib roughness disrupts the ωx streaks
in the roughness sublayer. The disturbed streaks form a high ωx fluctuating region
downstream of each rib; it corresponds to the intensive TKE dissipation. Since neither
v2 or w2 becomes significant in this region, these high ωx streaks lie mostly within the
dissipative vorticity range. Not very coherent vortical structures are observed; rather
complex patterns of vorticity iso-surfaces, primarily formed above and downstream
of the rib, are visualized in the figure. This suggests that regular periodically mounted
strip roughness produces irregular complicated turbulent motions near the wall.
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Figure 15. Iso-surfaces of ωy near the rough wall. Dark grey, +5.0%, light grey, −5.0%; of

|ωy |Rmax, respectively, or ±0.21 in wall units, normalized by u2
τR

/ν.
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Two-dimensional roughness produces three-dimensional, incoherent vorticity,
mimicking the effect of sand-grain roughness; this is the origin of k-type roughness
in a microscopic view.

The deflection of vortical streaks can be understood better by examining ωy around
the roughness elements; figure 15 shows the iso-surfaces for ωy = ± 0.05|ωy |Rmax. The
vortical streaks from the upstream region are deflected by the rib roughness, and
attached on the upstream side of each roughness element. Then, these wall-normal
vortices break down in the downstream region as they merge into the irregular vortex-
shedding motions. These disrupted vortical structures near rib-roughened wall were
also reproduced numerically by Leonardi et al. (2003a) and Nagano et al. (2004), and
agree well with their observations.

As the TKE distribution has a peak due to the w-fluctuation near the upstream
face of each rib, these ωy streaks have a crucial effect on the w2 production. The
vortices attached on the rib are intensified by vortex stretching because of the high
strain at the upstream corner. This vortical motion produces the spanwise velocity
fluctuation near the rib front, combined with blocking of two-dimensional mean flow
by transversely placed rib roughness.

5.2. Averaged result

The near-wall vortical structures are explained by examining averaged profiles.
Figure 16 shows near-wall distributions of r.m.s. vorticity fluctuations normalized
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Figure 17. The two-dimensional distributions of r.m.s. values of vorticity near rib roughness
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by the friction velocities on each wall. Toward the middle of the channel, the
vorticity fluctuations of all three directions collapse. In this high-Reynolds-number
region, dissipative behaviour is supposed to be dominant in r.m.s. vorticity; therefore,
dissipation is isotropic in the channel. Anisotropy arises near both ends of the channel
owing to the wall effects. The smooth-wall vorticity distributions are similar to those
obtained in other DNS studies with a smooth wall (e.g. Kim, Moin & Moser 1987).
The local minimum of ωx rms implies the presence of streamwise vortices peculiar to the
smooth wall. In the rough-wall vorticity distributions, all three components collapse
within a close range above the roughness. Within the roughness, ωx and ωz show
similar profiles from the bottom surface to the rib top, although two-dimensional
views reveal different distributions. The value of ωy drops towards 0 reaching the
bottom, as the smooth wall.

In figure 17, the two-dimensional distributions of r.m.s. vorticity fluctuations are
compared in all three directions. The term ωx rms has an intense region downstream of
each rib roughness. This corresponds to a significant dissipation region in the TKE
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budget. The dissipative region of ωx rms shows an intense region from the rib top
to the downstream bottom. Within the roughness, the pressure redistribution term
balances this dissipative region, rather than the production term. ωy rms has a peak
region attached on the upstream side of the rib. This region corresponds to a high
w2 region shown in figure 12(b). Wall-normal vorticity streaks produce the spanwise
velocity fluctuation. ωz rms shows peaks not only just above the rib, but also in the
recirculation region of the upstream side of the rib. As will be shown in the following
section, ωz is produced by unsteady non-periodic vortex shedding; the large-scale

motions are those most responsible in the u2 production.

5.3. Vortex evolution in the roughness sublayer

Here, the spanwise structure of vorticity fields in the roughness sublayer is discussed
by visualization of a time-dependent solution. As shown in figure 9, since the turbulent
shear stress is the dominant term in the roughness sublayer to balance the pressure
drag, strong mixing occurs within and above the roughness to produce the turbulent
shear. It induces the intensive mass and momentum exchange between the wall layer
and bulk flow. This flow structure is primarily caused by the unsteady eddies formed
near the roughness element. The presence of the unsteady vortices distinguishes k-type
and d-type roughnesses, as mentioned in § 1. Direct numerical simulation is able to
follow the development and evolution of this vortical structure through visualizations.

Figures 18 shows a time sequence of spanwise fluctuation vorticity ωz, on a subset
of an (x, y)-plane for 0 � x/h � 20, 0 � y/h � 3, over the period t/th = 0 to
7.7, where the simulation time is normalized by th = h/Ubulk . Because of the mesh-
stretch effect, weak unsteady oscillatory behaviour is seen in the mesh-expanding
region downstream of the rib. However, it has been confirmed that this numerical
error has been significantly reduced from the solution on a coarser grid used in the
grid independence study. In figure 18, the development of spanwise vortices near
rib roughness is captured; these vortices are formed through the interaction of the
bulk flow and roughness elements. For example, in figure 18(b), a vortex formed
downstream of the left rib can be recognized, produced by the mixing of mean
flow and relatively slow inner flow behind the rib. In the same figure, a vortex that
represents upstream recirculation is developing ahead of the right rib. This produces
a high ωz rms region at the upstream lower corner shown in figure 17. However, these
vortices are very unstable and shed into the outer layer shortly after the development,
since they are not confined in the cavity, unlike d-type roughness as shown by Perry
et al. (1969). In figures, 18(c) and 18(d), the vortices are deformed and merged into
smaller elongated eddies; in figure 18(e), no apparent vortex configuration can be
found.

As mentioned in § 1, the LES study by Shah & Ferziger (1998) showed the presence
of horseshoe-vortex shedding around a cube mounted on a wall. This is an example
of coherent motions for the flow over a three-dimensional obstacle. However, our
time sequences of vortical structures presented above are irregular and complicated
compared to their result, as generated on two-dimensional geometry.

On the other hand, in a meteorological framework, a mixing-layer analogy has
been suggested for a two-dimensional organized structure in the roughness sublayer
(Raupach, Finnigan & Brunet 1996; Finnigan 2000). Originally, the mixing layer
refers to a turbulent mixing motion produced by the interaction of two uniform non-
turbulent flows. However, they proposed an analogy between a coherent structure in a
fully turbulent canopy flow and a plane mixing layer. A two-dimensional mechanism
for the mixing-layer development, which is caused by the Kelvin-Helmholtz instability,
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Figure 18. Time sequence of spanwise vorticity ωz (−0.1 <ωz
+
R < 0.1) near rib roughness in

an (x, y)-plane. Simulation time is normalized by th = h/Ubulk .

has also been suggested. Other atmospheric and laboratory studies also support
the occurrence of a plane-mixing-layer structure (Zhuang & Wilson 1994; Judd,
Raupach & Finnigan 1996; Brunet & Irvine 2000; Novak et al. 2000; Poggi et al.
2004a, b). Mixing-layer-type coherent vortical motions are supposed to develop near
the roughness top in a canopy flow, although the applicability of this analogy to
general k-type roughness is unclear. However, our visualization presents no obvious
coherence sustained over the time-dependent ωz field. Only unsteady transient vortices
are produced near the roughness elements, which intensifies the mixing mechanism in
the roughness sublayer.
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Figure 19. Streamwise-averaged Reynolds stress anisotropy tensor distributions.
bij = uiuj /k − (2/3)δij .

6. Near-wall anisotropy
In the literature on rough-wall turbulence, anisotropy in a rough-wall boundary

layer is often of interest. Correlations and spectra of velocity or vorticity have been
experimentally measured and compared to the isotropic relations. Here, we examine
the variation of near-wall anisotropy through single-point correlations in our DNS
case.

The Reynolds-stress anisotropy tensor

bij =
uiuj

k
− 2

3
δij , (6.1)

provides a measurement of isotropy in terms of Reynolds stress. The diagonal
components, b11, b22, b33 of the anisotropy tensor lie between −2/3 and 4/3; the
trace bii ≡ 0 is an invariant of bij . The streamwise average of bij in Case F–1 is shown
in figure 19. As can be seen from the b11 distribution, and also can be inferred from
the Reynolds stress distributions in figure 10, strong anisotropy arises in b11 through
the near-wall behaviour of u2 on the smooth-wall side. However, on the rough-wall
side, anisotropy is considerably reduced. Just above the roughness, and also below
the b11 maximum on the smooth-wall side at y � 14, b11 reaches its local maxima,
while b33 comes close to zero. Towards the middle of channel, anisotropy is gradually
reformed, as b11 > 0, and b22 ≈ b33.

Near-wall anisotropy can also be examined using a dissipative small-scale of
turbulence structure. The ratios of variances of velocity derivative and vorticity
have been studied as a measure of isotropy of dissipation in various flows (Browne,
Antonia & Shah 1987; Shafi & Antonia 1997). Shafi & Antonia (1997) measured the
following parameters for a boundary-layer flow over mesh roughness:

K1 ≡ 2 (∂xu)2 / (∂xv)2,

K2 ≡ 2 (∂xu)2 / (∂xw)2,

K3 ≡ 2 (∂xu)2 / (∂yu)2,

K4 ≡ 2 (∂xu)2 / (∂zu)2,

Kω2
≡ 5 (∂xu)2 / ω2

y,

Kω3
≡ 5 (∂xu)2 / ω2

z .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(6.2)
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Figure 20. Distributions of the ratios, (6.2): (a) near the rough wall; (b) near the smooth
wall.

In isotropic turbulence, the above ratios are all equal to 1. We examine the isotropy
for the rib-roughened channel flow using these parameters.

Figure 20 shows the parameters in (6.2) near the rough and smooth walls. Some
parameters have singularity at the solid surface, although near-wall behaviour of each
parameter can be distinguished. Away from the wall, K1 � K2 > 1 and K3 � K4 < 1 are
the limiting relations in the middle of the channel. It agrees with the cases reviewed
by Browne et al. (1987); they summarized these ratios for various flows. In our DNS
case, approximately K1 = K2 = 1.1 and K3 = K4 = 0.8 in the middle of the channel.
Also, Kω2

� Kω3
since ω2

y and ω2
z collapse away from the wall, as in figure 16; they

are closer to 1 than the other ratios. Comparing between the smooth- and rough-wall
values, a shorter relaxation distance is observed in the rough-wall case to reach the
limiting state. Above the rough wall, all the ratios quickly approach the limiting
values. Within the roughness, all the ratios except K3 reach a settled state at y+

R � 50.
The relaxation in the smooth-wall case is rather slow. The reduction of anisotropy on
a rough wall is also observed in dissipative length scales.

The above observation on the reduction of anisotropy is primarily due to the differ-
ence in turbulence structure near wall, as seen in the instantaneous flow visualization
in § 5. The coherence in vortical structure near a smooth wall prevents the flow from
reaching isotropy. However, the rough-wall disrupted vortices lose this anisotropic
structure and alters the characteristic length-scales near wall. This was also confirmed
both experimentally and numerically (e.g. Krogstad & Antonia 1994; Leonardi et al.
2003a) through the examination of two-point correlations for k-type roughness.
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Figure 21. Turbulent kinetic energy budget near the rough wall, normalized by u4
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/ν:
�, H–L (Re = 18 500).

7. TKE budget and wall-normal flux
To compute the turbulence statistics, the sampling is done at the staggered mesh

locations for the Reynolds stress budgets of the u2, v2 and w2 transport equations.
The same second-order discretizations as those employed in the governing equations
are used for all terms in these equations. Then, each obtained statistical term is
summed up at the middle of the numerical cell for turbulent kinetic energy.

7.1. TKE budget

The streamwise-averaged, TKE transport equation can be written as follows:〈
Uj

∂k

∂xj

〉
= 〈P〉 − 〈ε〉 − ∂〈pv〉

∂y
− 1

2

∂〈ukukv〉
∂y

+ ν
∂2

∂y2
〈k〉, (7.1)

where P is the TKE production term, −uiuj∂jUi; ε is the TKE dissipation term,

ν ∂jui∂jui . Figure 21 shows the distributions of each term in (7.1) near the rough wall.
The convection term, the left-hand side in (7.1), is omitted since its contribution has
been found to be small except in the vicinity of y = h. Production and dissipation
terms from H–L are also shown, although only the measurements far from the
roughness elements are provided. The budgets on the smooth-wall side are similar
to those of smooth-wall channel flows (Moser, Kim & Mansour 1999), although
our results show that the high-Reynolds-number limit is not achieved; they are not
presented here.

As can be seen from the TKE budget, strong energy production is observed
just above the roughness. Such a near-wall production peak can also be seen in
smooth-wall turbulence; for a channel flow with a sufficiently high Reynolds number,
uv+ = 1/2 gives the maximum P+ = 1/4, which occurs where viscous stress equals the
Reynolds stress. On the rough side, the viscous sublayer is disrupted. Irregular vortical
motions, induced by separation at roughness elements, produce high turbulence
intensities, which results in a high production region, as described in § 4.4. The
difference of production and dissipation is balanced by turbulent diffusion, so that a
sharp peak of energy production develops, with energy fluxes both toward the outer
layer and into the roughness elements.
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Figure 22. The ratio of the TKE production term to the TKE dissipation term for even and
uneven roughnesses.

Further from the wall, the turbulent diffusion term reaches zero by y � 2h; above
this location, production and dissipation balance so that an equilibrium outer layer
is established. The flow in this layer obeys a logarithmic law, which is confirmed by
the velocity profile in figure 5. Figure 22 shows the ratio of the production term to
the dissipation. The above observation on equilibrium is also confirmed by this ratio;
above y � 2h, P/ε becomes close to 1.

On the contrary, below y � 2h, the flow is directly, dynamically influenced by the
roughness. The dispersive effects arise because of the non-uniform distribution of
mean quantities in the streamwise direction. The direct influence by roughness is
observed not only in the TKE budget, but also in the velocity profile (figure 6). The
deviation of the mean U profile from the log-profile is insignificant above y > 2h

throughout the channel. This inner region can be identified as the roughness sublayer.
We can assume that the layer width in our DNS case is about 2h; above that, an
equilibrium log-layer is established, regardless of the roughness geometry. The TKE
budgets obtained in the DNS studies by Miyake et al. (2001) and Nagano et al. (2004)
also show that the flow reaches an equilibrium state at y � 2h for a rib-roughened
wall channel flow, although their roughness heights were relatively low. Raupach et al.
(1991) suggest 2h–5h for roughness sublayer width in general cases.

Within the roughness, the behaviour of smooth wall turbulence is replicated for
dissipation and viscous diffusion near the bottom of the roughness element; these two
terms have peaks on the bottom surface to balance. On the other hand, production is
rather sluggish at y+

R ≈ 10, where it would be maximum for smooth-wall turbulence.
The pressure term becomes more significant in this region. It serves as an energy
source near the strip roughness bottom; further from the bottom, close to the top,
the pressure term reaches zero, except for a small oscillation in the vicinity of rib top
face. The production term slowly increases toward the energy source area above the
rib roughness. Zhuang & Wilson (1994) estimated that pressure redistribution would
show a significant amount of loss in the TKE budget for a forest canopy flow near
the canopy top. However, the result of our case does not support their observation.

Figures 21 and 22 also contain the results of uneven roughness, Case M–2. In the
TKE budget, the production, dissipation, and turbulent diffusion terms are included.
Since the top solid face of rib roughness causes a discontinuous peak in statistics,
uneven roughness relaxes this peak by employing two different heights. Each term
agrees with the result of the square rib height in Case F–1 below the shorter rib height
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in Case M–2. However, the peaks of production and turbulent diffusion, located above
the roughness, are shifted further from the wall, as those peak values are reduced.
The peak location is determined by the taller roughness; the shorter shows less
significant effects. This is another instance of the dominance of taller roughness in
TKE production.

7.2. TKE flux

Figure 23 shows the streamwise average of turbulent kinetic energy flux in the wall-
normal direction throughout the channel for Cases F–1 and M–2; the experimental
data of H–L are also shown. The profiles of the DNS cases and the experiments
collapse above y ≈ 10h, but show a significant difference near the rough wall. As
pointed out by Raupach et al. (1991), measurements within or close to roughness
have experimental difficulties, especially for higher-order correlations. Therefore, these
measurements of triple velocity correlations may not be precise in the intensive
turbulence region, i.e. near the roughness elements.

As seen from the TKE budget in figure 21, there is a strong energy source just
above the roughness element. It produces the energy fluxes in both the upward and
downward directions; zero-TKE flux is found at just above the roughness. In y <h, a
negative flux, formed within the roughness, diffuses the kinetic energy into the rough
surface. In the equilibrium layer above y ≈ 2h, the flux reaches its positive maximum
and becomes almost constant up to y ≈ 6h, and then gradually reduces to balance
the energy flux from the smooth-wall side. On the smooth-wall side, zero-TKE flux
is observed in the maximum production region, at y+

S ≈ 15; maximum TKE flux is
then achieved at y+

S ≈ 40 where a logarithmic layer begins to form. Although the
turbulence structures that give the maximum production are different, the streamwise
average of the TKE fluxes has a similar dependence on the production term.

For the uneven roughness, the location of zero-TKE flux is shifted upward, as
is the production peak. However, the lower grid resolution in Case M–2 causes a
discrepancy of the maximum and minimum values of flux; this discrepancy is also
seen in our preliminary coarse-grid solutions. The difference between even and uneven
roughnesses on TKE flux is unclear, other than shifting the position of zero flux.

Figure 24 shows the two-dimensional distribution of ukukv/2 around the rib
roughness. Strong negative fluxes are formed on the upstream and upper sides of
the rib, and in the downstream region. Clearly, the high TKE regions correspond
to the source of TKE flux. The contour lines are densely distributed; those regions
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are highly non-equilibrium. There are two regions that have positive TKE fluxes
within the roughness, y < h. Both are caused by mean flow recirculation around the
rib. Distinctively, on the upstream side of the rib, the recirculation produces a high
positive flux region, which results a high w2 region; hence, it produces a significant
positive TKE flux in the wall-normal direction by the contribution from the flux w2v.

8. Summary and conclusion
Direct numerical simulations were conducted for the flow in a rib-roughened

asymmetric channel. Sufficiently resolved detailed statistical and instantaneous data
were computed and visualized. Three-dimensional visualizations of instantaneous
fields provided insight into flow structures near a rough wall, as well as ensemble-
averaged data.

Conventionally, a rough-wall boundary layer had been dealt with by using an
a priori assumption: regardless of near-wall flow structure, a logarithmic law is
universally valid at a sufficiently high Reynolds number for any type of wall. It
prevails well above the surface, after adjusting the additive constant. The validity of
this modified log-law has been attested by many experimental studies. Here we also
confirmed that a logarithmic layer exists above the roughness wall layer, through
the velocity profile and TKE budget obtained in the simulations. Approximately
above y � 2h, an equilibrium layer is established, which follows a logarithmic velocity
profile. The reformed additive constant for the fully rough state obtained in our
velocity profile agrees with the experiment by Hanjalić & Launder (1972) and also
corresponds to the result provided by Leonardi et al. (2003b).

As can be seen in both averaged and instantaneous results, a number of flow
properties in the rough-wall vicinity show rather different behaviour from the smooth-
wall side. For instance, aerodynamic drag is dominant in the wall shear forces on the
rough surface, instead of viscous drag, as was seen in other numerical studies (e.g.
Leonardi et al. 2003b). Although non-equilibrium regions are established within the
wall-layer, or below the log-layer, of both smooth and rough walls, the flow structure
on each wall is different, as shown in the visualizations. Transversely mounted rib
roughness raises the disarrangement of vortical streaks in the streamwise and wall-
normal directions, as well as inducing the non-periodic irregular spanwise vortex
shedding, which serves as energy sources for the TKE flux towards the wall surface
as well as into the bulk flow. These unsteady vortical motions are represented in
the Reynolds shear stress within and above the roughness, which offsets the pressure
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gradient in the channel and leads to the reproduction of a log-profile. It should also
be remarked that the two-dimensional rib roughness, composed of smooth planes,
produces three-dimensional unorganized motions of vortices that disturb the viscous
sublayer, and bears a resemblance to sand-grain roughness; wall roughness enhances
the three-dimensionality of flow structure, as well as reducing near-wall anisotropy.
This is consistent with the observation in other numerical simulations (Ikeda &
Durbin 2002; Ashrafian & Andersson 2003; Leonardi et al. 2003a; Nagano et al.
2004).

We have also tested a two-dimensional RANS approach in comparison with the
DNS results obtained here. If we use a rough-wall model, which is calibrated for the
displacement of a modified log-law, we can find agreement with experimental data, as
was demonstrated by Durbin et al. (2001). However, when solved for the full geometry
and averaged in x, the RANS models used here underestimate the form drag acting
on rough-wall elements, and hence cannot correctly represent the modified log-law,
even though they are consistent with the universal logarithmic law of a smooth-wall
boundary layer. One way to explain this is that the roughness elements disrupt the
equilibrium wall streaks, producing turbulence structure that is not consistent with
the empiricism in the model.

Our DNS results show different turbulence structures between the smooth and
ribbed walls: the long streaks observed near a smooth wall become highly irregular
vortices. This may explain why the correct log-law displacement is not expected from
a RANS when we grid around the roughness. Log-law displacement is not a RANS
prediction, it is an empirical input to the model. Hence, models that are developed
for smooth walls do not capture the effect of altered turbulence structure.

This research was sponsored by the Office of Naval Research, grant N00014-01-1-
0419-P00003. Primary computer resources were provided by the U. S. Army Engineer
Research and Development Center–Major Shared Resource Center (ERDC MSRC),
the Army High Performance Computer Research Center (AHPCRC), and the Naval
Oceanographic Office–Major Shared Resource Center (NAVO MSRC).

REFERENCES

Akselvoll, K. & Moin, P. 1995 Large eddy simulation of turbulent confined coannular jets and
turbulent flow over a backward facing step. Rep. TF-63, Thermosciences Division, Dept. of
Mechanical Engineering, Stanford University.

Arora, R., Kuo, K. K. & Razdan, M. K. 1982 Near-wall treatment for turbulent boudary-layer
computations. AIAA J. 20, 1481–1482.

Ashrafian, A. & Andersson, H. I. 2003 DNS of turbulent flow in a rod-roughened channel. In
Proc. Third Intl Symp. on Turbulence and Shear Flow Phenomena, vol. 1, pp. 117–122. Sendai,
Japan.

Bandyopadhyay, P. R. 1985 Rough-wall turbulent boundary layers in the transition regime. J. Fluid
Mech. 180, 231–266.

Browne, L. W. B., Antonia, R. A. & Shah, D. A. 1987 Turbulent energy dissipation in a wake.
J. Fluid Mech. 179, 307–326.

Brunet, Y. & Irvine, M. R. 2000 The control of coherent eddies in vegetation canopies: streamwise
structure spacing, canopy shear scale and atmospheric stability. Boundary-Layer Met. 94,
139–163.

Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear
flow. Phys. Fluids 4 (8), 1637–1650.

Cherukat, P., Na, Y., Hanratty, T. J. & McLaughlin, J. B. 1998 Direct numerical simulation of
a fully developed turbulent flow over a wavy wall. Theoret. Comput. Fluid Dyn. 11, 109–134.



262 T. Ikeda and P. A. Durbin

Cui, J., Patel, V. C. & Lin, C.-L. 2003 Large-eddy simulation of turbulent flow in a channel with
rib roughness. Intl J. Heat Fluid Flow 24, 372–388.

De Angelis, V., Lombardi, P. & Banerjee, S. 1997 Direct numerical simulation of turbulent flow
over a wavy wall. Phys. Fluids 9, 2429–2442.

Djenidi, L., Elavarasan, R. & Antonia, R. A. 1999 The turbulent boundary layer over transverse
square cavities. J. Fluid Mech. 395, 271–294.

Durbin, P. A. 1991 Near-wall turbulence closure modeling without ‘damping functions’. Theoret.
Comput. Fluid Dyn. 3, 1–13.

Durbin, P. A. 1995 Separated flow computations with the k–ε–v2 model. AIAA J. 33, 659–664.

Durbin, P. A., Medic, G., Seo, J.-M., Song, S. & Eaton, J. K. 2001 Rough wall modification of
two-layer k–ε. Trans. ASME I: J. Fluids Engng 123, 16–21.

Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519–571.
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